ATLAS Standard Model Working Group Introduction

ATLAS Physics Workshop Athens, Greece May 22, 2003

Matt Dobbs

<MADobbs@lbl.gov>
Lawrence Berkeley Lab

Stefan Tapprogge

<Stefan.Tapprogge@cern.ch>
Helsinki Institute for Physics

Overview

- Previous Sessions: Heavy Ions & Forward Physics
- This session:
 - introduction (this talk)
 - Survey of ongoing work within the SM group
 - ATLAS commissioning with physics signatures
 - First SM measurements with ATLAS
 - minimum bias and the underlying event (A. Moraes)
 - PDFs for the first year of ATLAS Physics (J. Butterworth, with contributions from S. Ferrag, N. Skatchkov)
 - WW scattering (B. Cox)
 - Wavelet Analysis of VHM Events (V. Uzhinsky)

ATLAS S.M. Group 'Mission Statement'

- encompasses all Standard Model physics except Top, Beauty, and Higgs. (nominally includes heavy ions)
 - (First SM meeting was Feb 2002)
- In the first year(s) of collisions we'll focus on
 - analyses relevant for detector commissioning
 - in close collaboration with the performance groups.
 - verifying (and establishing!) our underlying assumptions
 - PDFs, Monte Carlos, min. Bias & underlying event,...
 - driven by new searches and in collaboration with MC experts
 - This will be the arena in which we PROVE our understanding of the detector and physics environ.
 - Supporting the new discoveries.
- Beyond the first year(s):
 - ® Key precision measurements: M(W), $\Gamma(W)$, $\sin^2\theta_W$, $a_s(Q^2)$, TGC's
 - drives performance studies. Requires perfectly understood detector.
 - indirect constraints ...
 - previously unseen SM phenomena
 - tri-boson production pp→VVV, gauge-boson scattering, QGCs, ...

Ongoing Studies

- W mass and width
 - analysis change up and running focus now on systematics
 - → M. David, C. Marques, A. Maio (Lisbon)
- $P_T(Z \rightarrow e + e -)$ distribution
 - probe QCD with well understood EW phenomena
 - test new theoretical advancements in extrapolation b/t perturbative and nonperturbative regimes (Zhang, Quid, Berger 2001-2)
 - →P. Staroba (Prague)
- di-jet production at high Q² (see PDF talk)
 - exotic searches is primary motivation
 - early user of CTEQ PDF's with errors.
 - provides measure of α_S(Q²) →S. Ferrag (in2p3)
- γ + jet for measuring PDF(G) (see PDF talk)
 → N. Skatchkov / D. Bandurin (Dubna)

Ongoing Studies: Status of the NLO WG at KEK

http://atlas.kek.jp/physics/nlo-wg/index.html and http://atlas.kek.jp/physics/nlo-wg/grappa.html

- LO generators in the GR@PPA framework
 - GR@PPA_4b (all SM 4 b-quark productions)
 - Version 1.06 release in Apr., 2002. → S. Tsuno et al., Comput. Phys. Commun, 151 (2003) 216
 - The PYTHIA approx. for pure QCD processes used in a Phys.
 TRD analysis was found to be reasonable (ATLAS MC meetings).
 - Version 2.01 release on the Web page in Apr., 2003.
 - * Les Houches external generator interface, PYTHIA 6.2 and HERWIG 6.5 embedding
 - * (Preliminary) support of LHAPDF
 - GR@PPA_All (collection of GR@PPA-based generators)
 - GR@PPA_4b + "W/Z + jets", "6-body top-pair" etc.
 - Coming soon (debugging)
- NLO generator
 - Test of ideas using the DY process
 - Y. Kurihara et al., Nucl. Phys. B654 (2003) 301
 - Loop-corrected ME generation by GRACE
 - LL-subtraction method to avoid double counts
 - * An application to LO processes is being tested with the Wisconsin group.
 - Appropriate negative-weight treatment in event generation
- Initial-state Parton Shower
 - X-deterministic forward evolution
 - A new idea of an efficient forward evolution
 - In the above report by Kurihara et al.
 - NLL (Next-to-Leading Log) parton shower
 - Theoretical formulae are ready.
 - * T. Sugiura, Prog. Theor. Phys. 107, 1163 (2002)
 - A simple MC implementation was tested.

Probing the Triple Gauge-boson Couplings

- non-abelian $SU(2)_L \times U(1)_y$ gauge group (foundation of SM!)
 - \rightarrow WW γ WWZ couplings in pp \rightarrow W γ , WZ, WW
 - \rightarrow ZZ γ and ZZZ couplings in pp \rightarrow ZZ, Z γ
- each Lagrangian is written as a model independent parametrization.
- Probe tool: sensitive to low energy remnants of new physics operating at a higher scale
- complement to direct searches

Ongoing Studies: TGCs

recent pp → ZZ, Zγ studies by S. Hassani

ATL-COM-PHYS-2002-012,013

- effect of anomalous ZZV couplings is enhanced as much as energy⁶
- LHC will have a huge advantage over previous measurements
 - possibly one of the first "precision measurements" to come out of SM group (??)

pp→WZ, Wγ studies by M. Dobbs

ATL-PHYS-2002-019,020

statistics will dominate LHC measurements because limits are always derived from the few events furthest out in the P tail

Ongoing Studies: TGCs in pp \(\rightarrow\)WW

- L. Simic (Belgrade) is confronting the challenging WW→I,v,I,v final state.
 - * tt background is challenging!

process	W^+W^-	$t\bar{t}$	$W^{\pm}Z$	ZZ	Z
	NLO	NLÖ	LO	$_{\rm LO}$	LO
$\sigma_{tot}(pb)$	110	833	26.7	11.1	4.8E4
$\sigma_{leptonic}(pb)$	5.4	41.1	0.39	0.22	3.2E3

- however, a careful choise of cuts, including a tight jet veto, brings the signal out
 - two opposite charge leptons, $P_T(l\pm)$ > 25 GeV, $|\eta|<2.5$
 - Z-mass constraint |M_Z-M_{|+|-}|> 15 GeV
 - P_Tmiss > 50 GeV
 - Veto jets with P_T(jet)> 10 GeV, |n|<3
- ⊕ Events for 30 fb⁻¹

process	W^+W^-	tt	$W^{\pm}Z$	ZZ	Z
events	7800	715	51	56	39

Ongoing Studies: TGCs in pp \(\rightarrow\)WW

- Limits are derived from the P_{T} of the electron-positron pair.
- Conservative form factor:
 - Λ=2 TeV
- $L=30 \text{ fb}^{-1}$
- $-0.06 < \Delta \kappa < 0.1$
- $-0.06 < \lambda < 0.06$ (first look, statistics only) assuming WWγ ≡ WWZ couplings

This previously ignored channel provides competitive limits on the κ-type anomalous couplings.

Physics Commissioning/Validation

- distinguish here between detector

 → physics validation
- Concentrate on inclusive signature based samples rather than processes for validating the physics
 - push the final comparison to require as little analysis/selection as possible
 - e[±], P_T^{miss} rather than W→ e[±],v
 - nothing new here, just a different point of view.
- choose signatures which are dominated by (if possible few) well understood SM processes
 - but which might exhibit enhanced sensitivity to MC parameters & PDFs.
- usual game → get an (relatively!) unbiased knowledge of one distribution by triggering on another.
- for each signature, measure kinematical properties and cross-sections
 - → to validate our understanding of the physics environment
 - → TUNE the Monte Carlos
- * Eventual extension to CDF style signature based (model independent) searches.

Inclusive Signature Based Samples

- charged particle distributions (from min. bias)
 - P_T and η from random triggers (10M events, 1 year at 1Hz, 3 days at 100Hz)
- single & di-electron/muon distributions
- isolated photon distributions from γ + jet
- jet distributions
- inclusive spectra of resonances (W,Z,Y,J/ Ψ , η , π ⁰)
- $= e/\mu + N \text{ jets (i.e. } W, Z + N \text{ jets)}$

First Measurements / "Papers"

- 1st Collisions, inelastic event structure
 - minimum bias, basic energy flow and charged/identified particle spectra
- Inclusive jet production
 - angular distributions, multi-jet production
 - \odot Observation of jets with $E_{T} > 1$ TeV and M(j,j) > 1 TeV
- Inclusive lepton spectra
 - constrain production processes and pdf's
- Inclusive production of W and Z
 - ratio of production cross-sections, lepton flavours
 - \odot QCD recoil: $P_T(Z/W)$, and $P_T(l\pm)$
- Observation of high mass lepton pairs
- Inclusive photon production
 - measure PDF(gluon), combine w/ flavour tag to measure PDF(b)
- Heavy flavour (tt, bb) cross sections (top, beauty groups)
- First attempts for precision physics
 - ▼ TGC production of ZZ/Z
 (??)
 - W-charge asymmetry
 - observation of A_{FR}

Conclusions

- Several new/exciting SM studies underway (min bias, P_T(Z), PDFs, direct photon, WW TGC & Scattering, VHM) since the formation of the SM group last year.
- Regardless of which LHC physics excites you most, ATLAS (you!) will be crunching on SM topics during the first year(s).
 - there is a disproportionately small number of people working on SM topics... why not get involved now?
- The first ATLAS papers will likely aim at proving our understanding of the LHC physics environment in the regime where is SM is reliable.
 - prove our understanding of the detector and the physics environment.
 - → to be followed by the discovery papers.